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SUMMARY 
 

Rotating machines are widely used in almost all industries as a critical component for process 

availability. Inadvertent failure of rotating machines causes high repair expenses and loss of revenue. 

These undetectable faults can belong to electrical, thermal or mechanical failures, e.g. broken rotor 

bar, bearing, stator inter-turn, foundation looseness, shaft misalignment, and static\dynamic 

eccentricity. Early detection of these failures requires online\offline monitoring and diagnostic (M&D) 

equipment, additional sensors, wiring and installation. 

This paper proposes a new autonomous electrical signature analysis (AESA) based M&D technique. 

The proposed technique provides earlier detection of failures such as bearing, stator inter-turn, 

foundation looseness, shaft misalignment and static\dynamic eccentricity. To verify the proper 

working and performance of the proposed method, various tests were performed on the actual 1000 

HP and 300 HP motors with mechanical faults in a machine repair shop. Performance of the proposed 

method was further validated using commercial motor current signature analysis (MCSA) based M&D 

equipment.  

Moreover, extensive testing of the proposed method was performed on four motors installed in an iron 

ore pellet plant. These motors drive fan loads rated between 3750 to 5000HP, which are crucial 

equipment in a pelletizing process. Each production line produces 600 tons iron per hour having 

market value of 50 USD/ton. Disruption of the process due to an inadvertent mechanical failure on any 

of these motors can result a downtime of up to 30 hours for each production line, resulting into 

revenue loss of approx. one million USD plus high maintenance, repair and/or replacement costs. 
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1. INTRODUCTION 

Motors, widely known as the industry backbone, play a key role in running industrial processes. While 

industrial processes consume the largest part of the total electricity, motors alone consume 45 percent 

of the total [1]. Any disturbance resulting in disruption of the process can cost multi-million dollars in 

loss of revenue as well as maintenance costs. According to the 1999-2012 Equipment Breakdown 

Structure (EBS) report published by the Electric Power Research Institute (EPRI), 80 percent of the total 

outages in processing plant are unplanned. Various motor reliability surveys and reports [2]-[6] itemize 

the specific failure modes of electrical machines. Fig. 1, summarizes the major motor failure causes, 

with 53 percent of the failures being mechanical: 41% bearings, 12% balance and mis-alignment, while 

47 % are electrical failures: 37% winding and 10% rotor. 

To prevent motors from these failures, various maintenance strategies are adopted by the industry. Three 

commonly used approaches are reactive, preventive and proactive maintenance. A fault that remains 

undetected leads to partial or complete damage to the machine therefore, resulting in unscheduled 

outage. In the reactive approach, after a failure caused damage, the machine is repaired or replaced 

during an unscheduled outage. This approach is not acceptable in critical industrial processes. In the 

preventive approach, the machine is inspected during a planned or scheduled outage time and is repaired, 

if required. This approach helps in detecting failures at an early stage. The disadvantage of this approach 

is the requirement for expensive test equipment or third-party services to test and diagnose possible 

failures. Moreover, fault detection remains dependent on the scheduled outage time, causing latency in 

early detection of the fault before it evolves into a complete failure. 

The proactive approach, on the other hand, resolves the issue of outage time dependency by continuously 

monitoring the machine while it is online. Online monitoring also helps in early detection of faults and 

therefore, allows time to plan a maintenance strategy if required. However, proactive approach of 

continuous monitoring has to be autonomous – such that anomaly in a motor is detected without human 

intervention. This requires detection techniques to be more secure to avoid any false alarms. The 

proactive approach can help to achieve additional value in the following areas:  

• Preventive Maintenance (PM) or Condition Based Maintenance (CBM);  

• Asset Performance Management (APM);  

• Risk mitigation by asset level visibility and Risk Assessment (RA);  

• Root Cause Analysis (RCA) or post-event analysis 

• Early-Warning or Alarming to schedule maintenance and outage  

• Reduce process loss (outage time) to limit loss of revenue 

• Reduce cost and time of motor repair 

This paper proposes an autonomous electrical signature analysis (AESA) technique which helps to 

detect mechanical anomalies earlier to take preventive or condition-based maintenance approach. To 

achieve autonomous M&D, various novel security mechanisms are proposed for the conventional 

Machine Current Signature Analysis (MCSA). The algorithm test results from the 1000 HP motors 

performed in a motor repair shops are presented with various scenarios. 

 

2. CONVENTIONAL METHODS OF DETECTING OF MOTOR MECHANICAL FAULTS  

A.  Mechanical Vibration Analysis 

Mechanical vibration-based analysis to detect motor mechanical faults has been in use for more than 

70 years, with abnormal vibrations the initial sign of a likely mechanical fault. Faults such as load and 

shaft misalignment, foundation looseness, dynamic or static eccentricity, bearing damage, or broken 

rotor bar are the major sources causing these vibrations. Vibration analysis allows earlier detection of 

these faults and so action can be taken before they evolve into full-fledged failures and resulting in 

machine damage. 

Conventionally, vibration frequency spectrum is analyzed using Fast Fourier Transform (FFT) to 

capture the magnitude of the fault frequencies at multiples of the rotating speed or corresponding 

frequency. Broken rotor bar, for instance, usually shows up in the close vicinity of the operating speed 

or frequency. Other mechanical faults such as a bent shaft, bad coupling, or oversized bearing housing 

normally appear at twice the motor speed [7]. 
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B.  Motor Current Signature Analysis 

Motor Current Signature Analysis (MCSA) or Electric Signature Analysis (ESA), is used to detect 

various failure modes in a rotating machine by analyzing the stator current signal. The mechanisms 

surrounding MCSA have been in commercial use for over three decades, however, the technology can 

be applied in new ways for easier detection of faults that challenge other technologies such as vibration 

analysis, and for enhancing maintenance and troubleshooting programs. The MCSA-based method is 

commercially used to detect mechanical failure such as broken rotor bar, static and dynamic airgap 

eccentricity, stator inter-turn, bearing damage, and shaft misalignment [9]. MCSA systems rely upon 

FFT analysis, much like vibration analysis, to determine the fault frequencies. 

The following sections explain the formulations used to determine the fault frequencies of various 

faults. 

    1)  Bearing Faults 

A fault or defect in the bearing generates predictable frequencies in the current signal. Current 

frequencies related to bearing damage are computed using the following equation [8]: 

𝐹𝑏𝑒𝑎𝑟𝑖𝑛𝑔(𝑘) = 𝐹𝑆𝑢𝑝𝑝𝑙𝑦 ± 𝑘 × 𝐹𝑣𝑖𝑏     (1) 

where k is the integer multiple of the vibration frequency, Fsupply is the actual source supply frequency, 

and Fvib is the calculated vibration frequencies obtained from (2). Each part of bearing has its associate 

vibration frequency [8] 

𝐹𝑏𝑒𝑎𝑟𝑖𝑛𝑔 =
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where Db is the rolling element ball diameter, Dc is the cage diameter, Nb is number of rolling elements, 

and wr is the motor speed in rpm, as shown in Fig. 2. 

 
 

Fig. 1. Electric machine failures [2], [3] 
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Fig. 2.  Bearing geometry 
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    2)  Mechanical Faults 

Although foundation looseness, eccentricity and mis-alignment are markedly different mechanical 

fault conditions in a rotating machine, they can be identified from the same set of stator current 

frequencies related to eccentricity damage. 

The fault frequencies associated with these faults are computed using equation (3) as follows: 

𝐹𝐹𝐸𝑀(𝑘) = 𝐹𝑆𝑢𝑝𝑝𝑙𝑦 × (1 ±
2×𝑘×(1−𝑠)

𝑃
)    (3) 

where k is the integer multiple of the vibration frequency, s is the slip, P is no of poles and Fsupply is 

actual source supply frequency. 

    3)  Stator Inter-turn Faults 

Stator intern-turn faults frequencies can be determined from the following relations: 

𝐹𝑆𝑡𝑎𝑡𝑜𝑟_𝑚𝑒𝑐ℎ𝑎𝑛𝑖𝑐𝑎𝑙 = 𝐶𝐹 ± 𝐹𝑆𝑢𝑝𝑝𝑙𝑦     (4) 

𝐹𝑆𝑡𝑎𝑡𝑜𝑟_𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑎𝑙 = 𝐶𝐹 ± 𝐹𝑆𝑢𝑝𝑝𝑙𝑦 ± 𝑅𝑃𝑆    (5) 

where  

Center frequency, CF = RPS x Number of Stator Slots 

and Rotational frequency, RPS = Motor RPM/Fsupply 

 

3. PROPOSED AESA-BASED METHOD 

Existing MCSA-based tools successfully determine fault frequencies and their corresponding 

magnitude; however, they require an expert to analyze the data manually to diagnose the possible failure. 

Thus, these tools are not autonomous in functionality. Like existing MCSA-based methods, the proposed 

AESA-based method properly monitors the current signature to extract fault frequencies and calculate 

the corresponding magnitude. In addition to monitoring, the proposed algorithm securely and reliably 

diagnoses the failure, so that is no need to involve an expert for diagnosis. 

The proposed method offers AESA-based technique to detect various failure modes in a rotating 

machine and its assembly by analyzing the stator phase A current. This method provides detection of 

motor failures such as stator inter-turn fault, roller/ball bearing fault, and mechanical faults like 

foundation looseness, load shaft misalignment, static and dynamic eccentricity. The proposed method 

doesn’t require additional measurements such as noise, vibration, or temperature. 

The algorithm uses FFT computation of the Phase A current signal to determine fault frequencies 

related to the corresponding fault condition. Fault frequencies are determined using the relations (1)–

(5), as described in section II-B. For simplification purpose and since amplitude of the fault frequency 

is more significant at lower k integer values, the algorithm only considers k = 1, 2 and 3. 

The algorithm computes thirty fault frequencies: eighteen bearing fault frequencies, six mechanical 

fault frequencies and six stator inter-turn fault frequencies. Among these eighteen bearing fault 

frequencies, each bearing part (ball, inner-, and outer-race) has six associated fault frequencies. 

The algorithm also computes peak magnitude and energy in dB for each fault frequency and calculates 

the change in dB magnitude with respect to the baseline peak magnitudes (the healthy mode of the motor 

without misalignment) and energy at the corresponding fault frequency with respect to each load 

operating zone or load bin. 

Load Bin, Baseline Mode, and Monitoring Mode mechanisms are described in more details in the 

following sections. 

A.  Load Bin Mechanism  

The magnitude of the fault frequency is impacted by the motor loading and therefore the magnitude 

(dB) changes as the motor load changes. The proposed algorithm handles the load changing condition 

by using a load bin mechanism. A load bin is defined as the load interval of 10% within the 0% to 120% 

range of motor load operation, with a total of 12 load bins, as shown in Fig. 3.  

During AESA baseline mode operation, peak and energy dBs are computed and averaged over the 

entire configured period and then stored as averaged normalized dB with respect to each load bin of the 

motor. 
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B.  Baseline/Learned Mechanism 

For an ideal motor having no bearing, mechanical or stator faults, the dB magnitude of any fault 

frequency corresponding to load bin is ideally -100dB, meaning that the magnitude of fault frequency 

is zero. However, in practice this may not be the case since a motor without any faults may still generate 

some or all fault frequencies at low dB levels. The algorithm establishes the baseline dB of the inherent 

fault frequencies for all possible load bins during the settable baseline period or learning phase. 

C.  Monitoring Mechanism 

In monitoring mode, the AESA algorithm runs FFT on phase A current samples to capture the peak 

magnitude and energy for each possible harmonic factor (k = 1,2,3) related to the bearing, mechanical 

and stator faults. Computed AESA dB magnitudes at all fault frequencies after each 1 minute interval 

are compared with baseline magnitudes to extract the maximum change in dB. For secure operation of 

the fault declaration algorithm, data quality checks and AESA accuracy checks are performed prior to 

recording data.  

D.  Robust Data Quality Check 

Before computing the FFT of the current signal, a quality check of the input supply data is performed 

by the AESA algorithm. If any of the following data checks fail, AESA does not perform the FFT or 

data recording.   

• Fundamental frequency measured must be within +/- 5% limits of the nominal frequency. 

• Voltage measured must be within +/- 10 % limits of the nominal voltage.  

• THD (total harmonic distortion) of the phase current must be less than 5%. 

• ROCOF (rate of change of frequency) computed must be less than 5%. 

• Current unbalance in the system computed must be less than 10%. 

E.  High-Level Architecture of the Proposed AESA Algorithm 

This section provides a by step high-level architecture, as shown in Fig. 4, and procedure for the 

proposed AESA-based algorithm.  

Step 1. Measure the current signal from the Phase A current transformer (CT)  

Step 2. Perform a data quality check to assess the input power supply condition and then sample for 

processing.  

Step 3. Compute rotor speed and slip and supply frequency. 

Step 4. Compute fault frequencies for all fault types using relations (1)-(5). 

Step 5. Compute normalized dB magnitudes at fault frequencies w.r.t measured supply fundamental 

frequency.  

Magnitude in dB can be calculated as: 

Peak & 
Energy (dB)

101 to 110 % load

91 to 100 % load

81 to 90 % load

71 to 80 % load

61 to 70 % load

51 to 60 % load

41 to 50 % load

31 to 40 % load

21 to 30 % load

11 to 20 % load

0-10 % load

111 to 120 % load

 
Fig. 3.  Allocation of Peak & Energy dB values with respect to Load Bin during Baseline Mode 

Motors under test 
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𝑑𝐵 = 20 × log10
𝑋1

𝑋𝑓
        (6) 

where X1 and Xf are the magnitudes at fault frequency f1 and fundamental frequency fs, respectively. 

Step 6. Compute peak magnitude and energy in dB during baseline mode as an average of all dBs 

computed in the baseline period and stored as baseline data w.r.t each load bin interval (10%) of the 

motor operational load. Peak magnitude in dB is computed as the highest magnitude observed at all fault 

frequencies and Energy in dB is computed as the ratio of area within +/- 0.5Hz vicinity at frequency 

corresponding to peak magnitude and at fundamental frequency. Energy in dB can be calculated as: 

𝑑𝐵 = 20 × log10
𝐸1

𝐸𝑓
        (7) 

where E1 and Ef are the areas within the vicinity of the fault frequency f1 and fundamental frequency fs, 

respectively. 

Step 7. Compute peak normalized magnitude and energy in dB during monitoring mode over each 

computational interval and compare with the baseline dB to determine the change in dB(ΔdB) with 

respect to each load bin interval. Change in dB(ΔdB) specifies the difference between pre-fault 

(baseline) dB level and fault dB level. 

∆𝑑𝐵𝑘𝑛𝑜𝑟𝑚 = 𝑑𝐵𝑘𝑛𝑜𝑟𝑚_𝑓𝑎𝑢𝑙𝑡 − ∆𝑑𝐵𝑘𝑛𝑜𝑟𝑚_𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒   (8) 

∆𝑑𝐵𝑘𝑒𝑛𝑒𝑟𝑔𝑦 = 𝑑𝐵𝑘𝑒𝑛𝑒𝑟𝑔𝑦_𝑓𝑎𝑢𝑙𝑡 − ∆𝑑𝐵𝑘𝑒𝑛𝑒𝑟𝑔𝑦_𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒  (9) 

where k = 1, 2, 3 

Step 8. A fault is declared when the following logical criteria becomes true: 

∆𝑑𝐵𝑘max _𝑛𝑜𝑟𝑚 ≥ 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 𝑙𝑒𝑣𝑒𝑙       

𝑎𝑛𝑑     (10) 

∆𝑑𝐵𝑘max _𝑒𝑛𝑒𝑟𝑔𝑦 ≥ 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 𝑙𝑒𝑣𝑒𝑙       

where 

∆𝑑𝐵𝑘max _𝑛𝑜𝑟𝑚 = max (∆𝑑𝐵1𝑛𝑜𝑟𝑚, ∆𝑑𝐵2𝑛𝑜𝑟𝑚, ∆𝑑𝐵3𝑛𝑜𝑟𝑚) 

∆𝑑𝐵𝑘max _𝑒𝑛𝑒𝑟𝑔𝑦 = max (∆𝑑𝐵1𝑒𝑛𝑒𝑟𝑔𝑦 , ∆𝑑𝐵2𝑒𝑛𝑒𝑟𝑔𝑦 , ∆𝑑𝐵3𝑒𝑛𝑒𝑟𝑔𝑦) 

 

4. VALIDATION AND TESTING ON REAL MOTORS  

Unlike electrical faults, it is not possible to accurately simulate a mechanical fault using computer-

based simulation software. Therefore, to test and validate, the proposed algorithm was tested on actual 

motors with mechanical faults. For this purpose, the proposed method was tested on two motors with 

ratings 1000HP 4kV, and 300HP, 600V. These tests were performed at a motor repair shop facility in 

Canada. Furthermore, to ensure the proper working and validation of the algorithm, the test results were 
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Fig. 4.  Architecture of the Proposed AESA-based Solution 
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compared with the results of commercially available MCSA-based equipment. 

Before discussing the test results, it is important to understand that the commercial MCSA-based 

equipment is only used to validate the proper calculation of the fault frequencies and corresponding dB 

levels. As mentioned in the beginning of section III, an expert is required to diagnose the failure when 

existing MCSA-based tools are used. On the contrary, the proposed method is autonomous in 

functionality and can securely and reliably diagnose the fault without the involvement of an external 

expert. 

Moreover, working of the proposed technique has also been applied to four motors installed in an 

iron ore pellet plant. These motors drive fan loads rated between 3750 to 5000HP, which are crucial 

equipment in a pelletizing process. Each production line produces 600 tons iron per hour having market 

value of 50 USD/ton. Disruption of the process due to an inadvertent mechanical failure on any of these 

motors can result a downtime of up to 30 hours for each production line, resulting into revenue loss of 

approx. one million USD plus high maintenance, repair and/or replacement costs. 

A.  Computation of the Fault Frequencies 

As described in section III, the proposed method calculates all the fault frequencies associated with 

bearing, mechanical and stator faults. Proper calculation of these frequencies requires motor slip, 

number of poles, and nominal frequency. In addition, for bearing fault frequencies calculation, the 

algorithm requires bearing geometry such as the number of balls, and inner and outer circle diameter as 

well as ball diameter. 

Table 1 shows the fault frequencies autonomously calculated by the AESA algorithm for the motors 

under test using relations (1)-(5). 

B.  Validation of the dB Level vs Frequencies 

Fig. 5, shows dB level corresponding to mechanical fault frequencies determined by the proposed 

method (line with dots) and commercial equipment (line with triangles). For validation purposes, the 

TABLE I 

Calculated Fault Frequencies 

Bearing Fault Frequencies(Hz) Mechanical 

Fault 

Frequencies
(Hz) 

Stator Fault 
Frequencies

(Hz) 
Inner 

Raceway 
Rolling 
Element  

Outer 
Raceway 

44.28 194.71 322.32 15.00 0.00 

67.17 223.71 372.79 30.00 29.67 

103.83 252.81 387.75 45.25 30.00 

148.55 267.69 431.52 74.84 90.00 

164.41 268.63 442.36 90.00 121.99 

187.23 314.84 551.46 105.00 150.90 

 

           
(a)                                                                       (b) 

Fig. 5.  Comparison between the proposed solution and the commercial equipment for mechanical 

faults: (a) foundation looseness with motor running at 50%, (b) shaft misalignment with motor running 

at 90% 
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1000HP motor with foundation looseness and shaft misalignment faults was tested at 50%, 75% and 

90% rated load. A comparison of the test results of both the proposed solution and commercial 

equipment reveal that there is a good match between both the solutions.  

The matching of the dB values based on our proposed method and the dB value determined by the 

commercial equipment (which is accurate & calibrated for Fourier Transform results) shows that our 

proposed technique accurately monitors and diagnoses these faults. 

C.  Impact of Motor Loading on Fault Frequencies 

To justify the inclusion of the proposed Load Bin mechanism, the AESA algorithm was tested for 

various motor load conditions. For this purpose, the motor was operated at load 40%, 50%, 75% and 

90% of the rated load. Fig. 6 shows the dB level of the mechanical fault frequencies for these load 

conditions. It can be observed from the results that magnitude of the fault frequencies changes as the 

load changes, which verifies the need of Load Bin mechanism for baseline and monitoring to achieve 

autonomous & secured measurements. 

D.  Change in dB to Detect Anomalies  

As mentioned in section III-E, a fault is declared when both ΔdBmax_peak and ΔdBmax_energy 

exceed the threshold level. Test setup limitations didn’t allow for running the learning of the data 

(baseline mode) due to safety concerns. As a result, the algorithm considered -100dB as the baseline for 

both peak and energy baseline values, (dBkpeak_baseline, dBkenergy_baseline). To declare the fault, a 

threshold level of -65dB was selected based on the test data as shown in Table II. To declare the fault, 

the fault dB must be equal or greater than -65dB such that change of dB(ΔdB) equals 35dB (=-65dB - 

(-100dB)) or greater. 

Table II shows change in dB captured for both peak and energy to detect foundation looseness & 

shaft misalignment, respectively, at various motor load conditions. Threshold comparator takes 

maximum of the peak and energy dB into account to declare the fault.  

Fig. 7 (a) and (b) illustrate the maximum change in dB for both faults in comparison to threshold 

level. It can be observed that both peak and energy dB levels are above the threshold level that gives the 

 
Fig. 6.  Impact of Motor Load on Fault Frequencies 

-120

-100

-80

-60

-40

-20

0

0 20 40 60 80 100 120
dB

Hz

40% Motor Load

50% Motor Load

75% Motor Load

90% Motor Load

TABLE II 

Change in dB to Detect Foundation Looseness 

Motor 
Load 

(% of 
Load) 

Foundation Looseness Load Misalignment 

ΔdBkpeak ΔdBkenergy ΔdBkpeak ΔdBkenergy 

k=1 k=2 k=3 k=1 k=2 k=3 k=1 k=2 k=3 k=1 k=2 k=3 

40% 44 47 38 42 41 35 46 41 35 43 37 32 

50% 41 34 46 37 32 40 40 36 43 37 33 37 

75% 39 44 42 37 38 36 39 43 41 35 37 35 

90% 48 26 22 45 27 22 38 48 36 37 42 32 
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clear indication of the faults.  

The proposed mechanisms such as data quality checks, load bin, baseline mode, monitoring mode 

and evaluation of the both peak and energy dB made it possible to achieve the reliable solution. On the 

contrary, conventional MCSA-based equipment requires an external expert to diagnose the fault by 

analyzing the fault data consisting of frequency spectrum. 
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Fig. 7.  Change in dB for mechanical fault (a) foundation looseness, (b) load-shaft misalignment 
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