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SUMMARY 

 

Electric vehicles (EVs) are a promising technology to reduce the carbon footprint, but their significant 

penetration into the existing power grid infrastructure has increased the overall burden and may affect the 

power system's stability and reliability. The introduction of Vehicle-to-grid (V2G) technology has shown 

great promise in frequency regulation, voltage regulation, peak load shifting, and spinning reserve while 

helping to achieve high integration of Renewable Energy Sources (RESs). This study aims to compare the 

unidirectional and bidirectional charging optimization techniques proposed to minimize the EV charging 

cost and the impact of high penetration of EVs on the grid. Through the bidirectional communication 

infrastructure, the aggregator exchanges real-time data at every given time step between vehicle and the grid 

to assess and optimize each EVs charging schedule. Once connected to the charging station, EV immediately 

updates the aggregator with all necessary information. Based on this information, the aggregator sends a 

command signal to charging stations to charge or discharge connected electric vehicles. Market regulation 

price and regulation reference announced by the Transmission System Operator (TSO) and Distribution 

System Operator (DSO) influences the aggregator decision. 

In this case study, a Truncated Gaussian distribution function determines EV's time of arrival and departure. 

This study uses regulation signals provided by the Independent Electricity System Operator (IESO) for 

ancillary services supply in their regulation market. When grid requests regulation up, the aggregator sends 

a signal to increase the charging rate of the EVs until they reach their maximum capacity. During regulation 

down, the aggregator sends a command signal to discharge the EVs connected at the bidirectional charging 

stations. Whereas at the unidirectional charging stations, the EV changes its charging rate to reduce its 

energy consumption form the grid. The optimization functions consider charging schedule, initial and final 

battery SOC, arrival and departure times, regulation prices, battery degradation cost, battery aging cost, and 

vehicle charging requirements. The study demonstrates the performance of both optimization models using 

a standardized IEEE 14-bus distribution system. Each charging area consists of a composite load of 700 

EVs with representative charging profiles and power ratings. The EV fleet consists of three different electric 

car models: Nissan Leaf, Nissan e-NV200, and Tesla Model S. The simulation results show the potentiality 

of using the existing fleet of electric vehicles to support the grid frequency profile while reducing charging 

costs for EV owners. Additionally, combining V2G technology would shave peak demand and minimize 

power losses throughout the network, mainly when it requires added active and reactive power during daily 

peak periods. The IEEE-14 bus optimal power flow is modeled and analyzed in MATPOWER. The test 

systems are modeled and simulated in MATLAB using YALMIP optimization solvers. 

 

KEYWORDS 

Electric vehicle (EV), vehicle-to-grid (V2G), State of charge (SOC), battery performance, charging 

station, grid regulation, dynamic pricing, smart-grid, unidirectional, bidirectional. 

CIGRE-373               2020 CIGRE Canada Conference 

                                                                                Toronto, Ontario, October 19-22, 2020 

 



  2 

 

I. INTRODUCTION 

In tackling the fossil fuel crises and reducing carbon footprint, electric vehicles are playing a crucial role. 

EV emerged as the target of growth in the transportation sector. According to China Automotive 

Engineering Association projections [1], by 2030, the number of electric vehicles in China will exceed 80 

million. With a typical EV battery of 60 kWh, an equivalent energy of 4.8 billion kWh could be stored 

within the vehicles. This represents 22 % of China's daily energy consumption estimated at 21.7 billion kWh 

in 2019 [2]. Whether an electric vehicle absorbs electricity from the system or transfers it back, the net 

energy demand is considerable. Therefore, optimal management of EVs users' charging and discharging 

behavior can provide power to the grid and alleviate energy deficits [3]. Moreover, optimal energy and 

demand balance using EVs can now play a major role in improving grid stability and reducing peak 

generation requirements.  

V2G technology has shown great promise in improving the stability and reliability of the system through 

participating in frequency regulation [4], voltage regulation [5], spinning reserve [6], and peak load shifting 

[7]. Electricity supply frequency is one of the most critical stability indices commonly used in the operation 

of a power system and should operate within regulatory bounds. Given the real-time response characteristics 

of EV chargers (usually around ten milliseconds), EVs performing regulation services have a natural 

advantage over other regulatory entities such as synchronous machines [8]. 

Through bidirectional communication infrastructure, the aggregator exchanges real-time data at every 

given time step between vehicle and the grid to assess and optimize each EVs charging schedule. Once 

connected to the charging station, EV immediately updates the aggregator with all necessary information: 

Initial/final State of Charge (SOC), arrival time, departure time, and system charging requirements. The 

aggregator optimization model, based on the information received from the charging stations, sends a 

command signal to charging stations whether to charge or discharge a group of plugged-in electric vehicles. 

Figure 1 illustrates the two-way energy and information interaction between EVs and the grid. The nonlinear 

programming model intends to simultaneously minimize the battery degradation costs and maximize the 

benefit for EV owners while taking part in grid regulation. This model is applied to both unidirectional and 

bidirectional vehicles considering constraints and EVs limitations. 

Each EV provides grid regulation by injecting/absorbing active power into/from the grid while 

minimizing battery degradation and charging cost during a 24 hours simulation period. This study considers 

several scenarios with different EV penetration levels for both unidirectional and bidirectional EV charging 

optimization models. Section II describes both unidirectional and bidirectional charging techniques and how 

they can participate in grid regulation. In section III, an objective function models the optimal charging 

scheduling with constraints and EVs’ limitations. Section IV presents possible case studies, while section 

V analyzes and discusses the simulation results. Finally, section VI draws the primary conclusions and 

recommendations for future work. 

 

Figure 1. Interaction of EVs fleet with the grid using an aggregator 
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II. EV CHARGING TECHNIQUES 

A.  Unidirectional and Bidirectional System Architectures 

The main components of the unidirectional and bidirectional systems architecture are the grid, charging 

station, and the electric vehicle [9]. In unidirectional charging, the energy can flow in only one direction, 

i.e. from the grid to the electric vehicle. However, in bidirectional charging, the energy can also flow back 

into the grid. The unidirectional or bidirectional flow of energy can be accomplished through a charging 

station containing an AC/DC converter and a control unit. The electric vehicle also contains a control unit 

as well as a high voltage battery.  Both control units communicate to decide the amount of energy to 

exchange, its direction, its duration, and at what time. The flow of energy depends on the state of charge 

and the battery's rated power, the regulation needs of the grid, and the total load demand. An electric vehicle 

owner will use a unidirectional charging station to either charge the vehicle or provide regulation services 

to the grid. Whereas in the bidirectional charging station, the electric vehicle can also inject power into the 

grid to provide regulation services. 

B. Charging Stations Types 

Currently, EV charging stations are available in three different charging levels. The higher the level, the 

faster the charging rate, and the higher the charging power. For a level 1 charging station, an AC to DC 

converter is located inside the car, and it charges at 120 V with a current ranging from 15 to 20 A. This 

station typically provides 2 miles of driving distance for an hour of charging. Similarly, for a level 2 charging 

station, the converter is located inside the car, and it charges at 240 V with a current up to 80 A. An electric 

vehicle owner can expect to have 9 to 52 miles of driving distance for an hour of charging at a level 2 station. 

In contrast, DC power is delivered instead of AC power in a level 3 charging station. Its converter is located 

outside the car because of converter size and cost. Additionally, this level is not compatible with all current 

electric vehicles and is widely used in commercial locations. It charges electric vehicles at 480 V with a 

current up to 300 A; thus, an EV owner can expect to have 170 miles of driving distance for half an hour of 

charging. Existing EVs are compatible with one or two levels of charging stations. 

C. Grid Regulation Services 

The operation of both unidirectional and bidirectional charging involves an aggregator communicating 

with each charging station, which is further connected to a DSO. The aggregator organizes and facilitates 

EVs charging based on the regulation signal received from DSO/TSO and Retailer [11]. The electric vehicle 

updates all the necessary inputs to the aggregator when plugged at a charging station to predict the regulation 

capacity available at a bus. An electric vehicle charging schedule is generated based on EV’s charging 

characteristics and regulation signal. The aggregator updates the charging schedule at a defined time step of 

half an hour based on the regulation signal variation. At defined time step, if the power generation is more 

than the overall power demand, the aggregator sends a signal to charge the electric vehicle at its rated 

charging capacity, thus performing regulation down. If the power generation is less than the overall power 

demand, in unidirectional systems, the aggregator sends a signal to charge the electric vehicle at less than 

its rated capacity to reduce the overall power demand at a bus. Whereas, in a bidirectional system, the 

aggregator sends a signal to the electric vehicle so that it injects power into the grid to increase the generation 

capacity, thus performing regulation up. 

III. OBJECTIVE FUNCTION & CONSTRAINTS 

A. Objective Function 

The objective function J consists of two parts: J1 the battery degradation cost and J2, the revenue generated 

by EV from regulation services [8]. The goal is to minimize J1 and maximize J2 simultaneously using the 

decision variables 𝑃𝑖𝑗
⬇(𝑡) and 𝑃𝑖𝑗

⬆(𝑡) for each EVij: 
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𝐽1 =∑∑𝑇𝑆𝑡𝑒𝑝  × (|𝑃𝑖𝑗
⬇(𝑡)| × η𝑖𝑗

⬇ +
𝑃𝑖𝑗
⬆(𝑡)

η𝑖𝑗
⬆
) × 𝜖𝑖𝑗

𝐵(t)

𝑁𝐸𝑉

𝑗=1

𝑁𝐶𝑆

𝑖=1

 𝐽2 =∑∑𝑇𝑆𝑡𝑒𝑝 × (|𝑃𝑖𝑗
⬇(𝑡)| × 𝜖𝜖

⬇(t) + 𝑃𝑖𝑗
⬆(𝑡) × 𝜖𝑅

⬆(t)

𝑁𝐸𝑉

𝑗=1

𝑁𝐶𝑆

𝑖=1

) 

So, the objective function becomes: 

𝑚𝑖𝑛
𝑃𝑖𝑗
⬆ (𝑡), 𝑃𝑖𝑗

⬇ (𝑡)
 𝐽 = 𝑚𝑖𝑛

𝑃𝑖𝑗
⬆ (𝑡), 𝑃𝑖𝑗

⬇ (𝑡)
 ( 𝐽1 − 𝐽2) 

The main parameters used are: 

i and j: Charging station index and Electrical vehicle index 

NCS: Number of charging stations 

NEV: Number of electric vehicles 

TStep: Simulation time step 

 and : Charging efficiencies for regulation down and up 

 : Energy rewards for regulation down and up 

: Total wear cost of the battery of EVij 

Pij
max : Rated battery power of EVij 

SOCij: State of charge of EVij 

Eij
max : Maximum energy of the battery of EVij 

Prij: Battery price of EVij 

: Cycle efficiency of the battery of the EVij 

α and β: Battery related parameters 

Rref
 : Regulation signal from grid operator 

To calculate 𝜖𝑖𝑗
𝐵  , the following equation is used: 

𝜖𝑖𝑗
𝐵(𝑡 + 𝑇𝑆𝑡𝑒𝑝) = ϕ𝑖𝑗 [

β × {[1 − 𝑆𝑂𝐶𝑖𝑗(𝑡 + 𝑇𝑆𝑡𝑒𝑝)]
β−1

− [1 − 𝑆𝑂𝐶𝑖𝑗(𝑡)]
β−1
}

α
] where  ϕ𝑖𝑗 =

𝑃𝑟𝑖𝑗

2×𝐸𝑖𝑗
𝑚𝑎𝑥×η𝑖𝑗

2  

B. Constraints 

In both the unidirectional and bidirectional optimization models, the primary constraint is SOC which is 

bounded between a range of 4% and 95% as follows: 

0.04 ≤ 𝑆𝑂𝐶𝑖𝑗(𝑡) +

(

  
 
|𝑃𝑖𝑗
⬇(𝑡)| × η𝑖𝑗

⬇ −
𝑃𝑖𝑗
⬆(𝑡)

η𝑖𝑗
⬆

𝐸𝑖𝑗
𝑚𝑎𝑥

)

  
 
× 𝑇𝑆𝑡𝑒𝑝 ≤ 0.95 

1) Bidirectional Model Constraints: 

For 𝑅𝑟𝑒𝑓(𝑡) ≥ 0 : 𝑃𝑖𝑗
⬇(𝑡) = 0  &  0 ≤ 𝑃𝑖𝑗

⬆(𝑡) ≤ 𝑃𝑖𝑗
𝑚𝑎𝑥  and ∑∑𝑃𝑖𝑗

⬆(𝑡) ≤

𝑁𝐸𝑉

𝑗=1

𝑁𝐶𝑆

𝑖=1

𝑅𝑟𝑒𝑓(𝑡) 

For 𝑅𝑟𝑒𝑓(𝑡) < 0 : 𝑃𝑖𝑗
⬆(𝑡) = 0  &  −𝑃𝑖𝑗

𝑚𝑎𝑥 ≤ 𝑃𝑖𝑗
⬇(𝑡) ≤ 0 and ∑∑𝑃𝑖𝑗

⬇(𝑡) ≥

𝑁𝐸𝑉

𝑗=1

𝑁𝐶𝑆

𝑖=1

𝑅𝑟𝑒𝑓(𝑡) 

2) Unidirectional Model Constraints: 

For 𝑅𝑟𝑒𝑓(𝑡) ≥ 0 : 𝑃𝑖𝑗
⬆(𝑡) = 0  &  𝑃𝑖𝑗

⬇(𝑡) = 0   

For 𝑅𝑟𝑒𝑓(𝑡) < 0 : 𝑃𝑖𝑗
⬆(𝑡) = 0  &  −𝑃𝑖𝑗

𝑚𝑎𝑥 ≤ 𝑃𝑖𝑗
⬇(𝑡) ≤ 0 and ∑∑𝑃𝑖𝑗

⬇ ≥

𝑁𝐸𝑉

𝑗=1

𝑁𝐶𝑆

𝑖=1

𝑅𝑟𝑒𝑓(𝑡) 
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IV. PERFORMED STUDIES 

Four case studies are considered to firstly demonstrate the feasibility of the proposed model, secondly to 

compare the effectiveness of regulation in bidirectional and unidirectional charging models, thirdly to assess 

the impact of battery degradation on the overall cost reduction and finally, to assess the impact of EV 

availability on grid regulation performance. Both cases resolve the same objective function to obtain the 

charging or discharging rates for every vehicle at defined time steps throughout a day. 

A. Case studies 

1) Bidirectional with battery degradation model: This case includes a battery degradation model in 

the objective function to optimize the charging and discharging cycles and increase the overall life 

cycle of the battery. This case represents a more realistic model of the V2G operation, and its results 

would assess the revenue of an EV owner participating in regulation services while considering the 

impact on the battery. 

2) Bidirectional without battery degradation model: This case removes the battery degradation model 

from the objective function. This allows us to understand the impact of battery degradation in 

overall cost. Previous studies demonstrated that the battery degradation cost introduced by extra 

charge/discharge cycles while participating in regulation was negligible compared to regular aging 

costs [4]. The results from this case serve as a baseline to validate the impact of battery degradation 

in the objective function and its effect. 

3) Bidirectional with variable EV availability: EV availability is a challenge in charge scheduling. 

Case 1 and Case 2 assume that all the EVs continuously participate in grid regulation services. 

Previous studies suggested that prediction models can be used to assess the number of EVs available 

at each time of the day for a more realistic approach [12]. This case applies a truncated gaussian 

normalization model to obtain the number of EVs available throughout the day considering typical 

daily behaviors of owners.   

4) Unidirectional with battery degradation model:  This model applies to the current EV market, 

where G2V technology is more prominent than V2G. Previous studies proposed controlling the 

charging rates to perform regulation services with unidirectional chargers [13]. This study aims to 

demonstrate that G2V infrastructure can also perform grid regulation services and reduce EV 

charging costs. This case results allow us to compare with bidirectional models in terms of 

frequency regulation and charging cost optimization. 

B. EV Parameters and the Network Under Study 

The EV parameters selected for the case studies belong to vehicles with three types of charging powers, as 

indicated in Table 1. Each charging area consists of a mixed fleet of 700 EVs, with each EV having its 

charging station modeled as a variable load. The distribution network is based on the IEEE 14 bus system 

comprising conventional generators, transmission lines, synchronous compensators, and step-down 

transformers with EV loads and Toronto residential load connected on the low voltage nodes. 

 

Table 1. EV parameters 

Vehicle type 

Charging 

power 

(kW) 

Battery 

Capacity 

(kWh) 

Battery 

Price 

($) 

Nissan Leaf 7 24 6400 

Nissan e-NV200 22 40 9700 

Tesla Model S 50 100 24000 
 

Table 2. Data for model simulation 

Charger efficiency 90…95 % 

Cycle efficiency 99 % 

EV fleet 7x700 EVs 

SOC range 4 – 95 % 

Time step 30 min 
 

 



  6 

 

C. Optimal Power Flow Analysis 

The optimization problem is modeled in MATLAB and computed using YALMIP solver. Ontario 

regulation market price (Figure 3) is used to calculate the overall benefit for EV owners while providing 

grid regulation services. The simulation results provide the optimal charging or discharging rates for each 

vehicle throughout the day using the signal provided by IESO. The simulation output is fed into the 

MATPOWER Case 14. An optimal power flow analysis allows us to determine EVs impact on grid stability. 

 

Figure 2. Toronto load profile 

 

Figure 3. Regulation reward for Ontario market 

V. SIMUALTION RESULTS AND DISCUSSION 

A.  Bidirectional Optimization Model 

The real-time power injected/absorbed by the fleet of EVs to provide the grid regulation are compared 

with the regulation signal sent by the TSO/DSO every 30 minutes (Figure 4). In this case, EVs can meet 

regulation services as requested by the grid at every time step. 

Figure 4. Regulation support by bidirectional EV Figure 5. Frequency response by bidirectional EV 

In Figure 5, the Toronto frequency profile without regulation is plotted in blue. The frequency, in some 

instances, goes beyond the permissible limits, which may affect the grid stability and reliability. Whereas, 

when bidirectional EVs perform regulation up and down as requested by the grid, it improves the grid 

frequency and maintains it within the tolerance limit, as shown in orange. In case 2, the bidirectional 

charging station without the battery degradation model has a marginal difference compared to case 1 despite 

the possibility of V2G having an impact on EVs battery life. In case 3, bidirectional with variable EV 

availability is also able to regulate the frequency within the permissible limits throughout the simulation as 

the number of EVs in the case study is enough to meet the requested grid regulation. 
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B. Unidirectional Optimization Model 

 In the unidirectional charging model, EVs cannot take part in grid regulation whenever it is requested 

by the grid. Hence, regulation up remains zero throughout the simulation. On the other hand, EVs can 

participate in regulation down if their SOC falls within limits. As shown in Figure 6, they cannot participate 

in regulation after t =15 hours because they reached their maximum SOC of 95%. 

Figure 6. Regulation support by unidirectional EV Figure 7. Frequency response by unidirectional EV 

As unidirectional EVs cannot perform regulation up, they cannot inject active power to bring the frequency 

back within the permissible limits, as shown in Figure 7. Hence, the frequency profile results replicate the 

unregulated Toronto frequency profile whenever regulation up is requested from the grid. On the contrary, 

they can perform regulation down by charging EVs to reduce frequency deviation, as shown in orange, until 

all the EVs are fully charged.  

C. Comparision of Unidirectional and Bidirectional Cost Optimization Models 

As shown in Figure 8, the bidirectional charging stations earned profit throughout the day by actively 

participating in regulation services, whereas the unidirectional charging stations only participated in 

regulation down until t =15 hours as all EVs get fully charged. 

 

Table 3. Earned profit under 

given scenarios 

Study 
Earned Profit 

(per day) 

Case 1 $ 10.932 

Case 2 $ 10.925 

Case 3 $ 10.366 

Case 4 $ 2.759 
 

Figure 8. EVs’ earned profit during grid regulation 

The overall profit earned by providing grid regulation services increases significantly b y using the proposed 

V2G strategy compared to the G2V (i.e., an average of $10.932 per day using V2G versus $2.759 per day 

without V2G). Table 3 presents the average daily profit earned by an EV from grid support for all the above-

mentioned possible cases. The above results show the possibility of earning profit using an EV during idle 

time. 



  8 

 

VI. CONCLUSION AND FUTURE WORK 

This paper demonstrates how V2G and G2V can improve grid stability while minimizing the charging 

cost of an EV owner. The study conducted using a Nissan Leaf, a Nissan e-NV200, and a Tesla Model S, 

shows that EV owners can generate around $10 daily by using their electric vehicle for grid regulation 

services in the Ontario market. The optimization model includes the revenue earned through power 

exchange with the grid and a battery degradation cost based on the number of charging/discharging cycles. 

The simulation model uses an IEEE 14 bus system, including the Toronto's residential load profile and EV 

charging stations modeled as variable loads. The results demonstrate that both unidirectional and 

bidirectional charging schemes can maintain the frequency profile within grid regulation limits. However, 

V2G offers higher performance due to its ability to participate in both regulation up and down throughout 

the day.  

This study mainly considers EVs as standard mobile energy storage devices continuously available for 

regulation services. A further approach would be to integrate a prediction model that predicts the availability 

of EV at a given daytime and their energy demand. Moreover, this study can be extended to include a voltage 

regulation scheme, allowing available charging stations to inject or absorb reactive power in order to support 

the grid voltage profile. Finally, charging stations integrated with remote distributed energy resources, like 

solar and wind, can be used to charge EVs during off-peak hours and then perform peak shaving. 
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