CIGRE-483

Virtual testing lab for digital substation

ASHUTOSH SINGH
Business Development Manager

PETER WANG
Supervising Engineer P&C

ALAN XIA

Manager Substation Engineering

CÉDRIC HARISPURU
Product Lifecycle Manager

KABIR MOHAMMED
Country BU Segment Manager

Siemens Canada Limited Calgary, AB

ATCO Electric Calgary, AB

ATCO Electric (Canada) Edmonton, AB

Siemens AG Nuernberg, Germany

Siemens Canada Limited Oakville, ON

Market – Major factors driving the revolution of energy systems ...

Decarbonization

"All electric world" - Fluctuating infeed - e-Mobility

Power production from renewables Increases by over 300% between 2010 and 2030 Share of renewables goes up to 40% in 2030

Decentralization

Distributed generation - Microgrids - Energy autonomy

New installations distributed power generation Increases by over 150% between 2010 and 2030 Share of distributed goes up to 67% in 2030

Digitalization

Connectivity - Edge computing - End-to-end

Major industrial companies will using virtual avatars

By 2021, half of the major industrial companies will be using virtual avatars, resulting in productivity gains of up to 10 %

Major Challenges

Time and Costs

- Complexity of the protection system,
- Implementation is time consuming,
- Considerable efforts for testing & commissioning

Outage Management

- Faster energization (green field)
- Shorter outages (planned & unplanned)
- Substation extensions (brown field)

Agility and Flexibility

- Validation of new products,
- Implementation of new protection schemes,
- Fault analysis very complicated

Training and maintenance

- Training costs very high,
- Test lab assets (costly)
- Efficiency of maintenance

Benefits

Save time & increase quality throughout the system lifecycle

... and all this with higher quality, flexibility and more customer confidence in our products and systems

Introduction – Virtual testing of protection relay

Introduction – Virtual testing of protection relay

Advantages – Virtual testing of protection relay

Once relay configuration and tests et files are validated, it can be re-used in substation

Virtual test can be performed from remote, practically anywhere in the world. Easy to get experts involved from any location.

Several people can work in parallel, for example wiring test at site and function test at remote

Less time pressure on site and increased quality of the performed tests on site.

Time reduced at site, its very helpful in case of far remote locations. Reduced cost of commissioning hence

Advantages beyond project – Virtual testing of protection relay

It's safe

HAZARD

Revisit the conventional testing lab – Virtual testing of protection relay

Several type of relays required to perform tests on various application according to field requirements

Workforce must be available in lab location, physical wiring changes, making connections per test required

Different software and licenses may be needed

Infrastructure to maintain the costly lab equipment's,

Maintenance expenses like, calibration

Introduction SIPROTEC Digital Twin – Virtual testing of protection relay

Relay configuration software

Relay test kit

Relay to test

Introduction SIPROTEC Digital Twin – Virtual testing of protection relay

Pilot digital substation with IEC61850 process bus at 72kV Sullivan Lake substation (ATCO)

Station bus upgrade with IEC61850 at 240kV Louise Creek Substation (ATCO)

Introduction SIPROTEC Digital Twin – Virtual testing of protection relay

PC Internet Login Credentials

Access your SIPROTEC Digital twin in 5 steps-Virtual testing of protection relay

Import SIM files to portal and switch on the devices

Make connections between devices in soft as you make wiring between devices in field or lab

Now relay and supporting device like CB is ready for analog and BI injection

Apply the current, voltage or BI needed to apply fault to the relay from injection module. Relay will be trip as per the configuration

Report will be available from SIPROTEC digital twin

A report also can be derived from logs retrieved from configuration software which is DIGSI5 in this case

Please note fault record in comtrade format is also available to download just like a lab test or actual fault

Future use – Virtual testing of protection relay

Replay of the faults occurred at site in SIPROTEC digital twin

Tests of complicated protections schemes like multi-terminal line differential

Communication testing with substation automation system on IEC61850

Thank You

Questions?

ASHUTOSH SINGH

PETER WANG

ALAN XIA

CÉDRIC HARISPURU

KABIR MOHAMMED

Siemens Canada Limited

ATCO Electric (Canada)

ATCO Electric (Canada)

Siemens AG (Germany)

Siemens Canada Limited

CIGRE-483

Virtual testing lab for digital substation

CIGRE-483 Virtual testing lab for digital substation

Time		Thursday, November 3, 2022		
08:00	12:00		Tutorial 2 — Eau Claire Siemens Canada Digital Twins and the Energy System –	
			Interactive Tutorial Session	

