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Power Transformers Failure

* Power transformers — vital parts of every
power network

o W|nd|ng fallures — the predominant causes Transformer failure for transformer at substation [1]

of failures Others
6% -

Winding
14%

Core

« High percentage of failures — insulation 8%

problems (about 41%)

Bushing
13%
OLTC
Coolant Tank 10%
[1] Hussain, Md Rashid, Shady S. Refaat, and Haitham Abu-Rub. "Overview and partial 5% 3%

discharge analysis of power transformers: A literature review." IEEE Access 9 (2021). - .
Failure statistics of power transformer component

[2] Murugan, Raji, and Raju Ramasamy. "Failure analysis of power transformer for effective based failures [2]
maintenance planning in electric utilities." Engineering Failure Analysis 55 (2015).
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Power Transformers Failure

« Many winding problems can be detected by Partial

Discharge (PD) monitoring and localization
 PD has several impacts in transformers
« Accelerated degradation of insulation materials

« Overheating due to high energy PD weakening

the whole system

 Reduced life expectancy of the transformer

«  Worst case scenario: unexpected breakdown Transformer winding faults

Bad insulation paper due to partial discharge

https://www.apolloenergyanalytics.com/transformer-failure-partial-discharge/
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PD Localization in a Power Transformer Winding

Measurement Method Measurand

-

https://www.electricalclassroom.c
om/types-of-transformer-windings/

XTI
(2 cigre ATCO'

Canada



PD Localization in a Power Transformer Winding

Measurement Method

https://www.electricalclassroom.c
om/types-of-transformer-windings/
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PD Localization Using Electrical Methods Procedures

Objective:
Simulate PD in a transformer winding and localize its source using a learning-based algorithm

PD Simulation PD Localization

Modelling of the Winding »  PD Data Acquisition

4

Modelling of a PD Pulse J

Feature Extractlon for
PD Slgnal

Injecting the PD Pulse
to the Winding

4

Capturing the Output Signal
at the Winding Terminal

PD Data Analysis

PD Localization

|
|
|
|

) ) ) )

|
|
|
|

ST/
& aigre ATCO'

|
|
Canada



PD Localization Using Electrical Methods

Valid for the low frequency range

L,
N+1

) L Eo—
| Modelling of the Winding | « Capacitive network model T
‘ . » Detailed ladder network model
Foa PD | (a)
¥ ’ Valid for the high frequency range v .,
i i \ « Multi-conductor transmission line (MTL) Va 4?114— Vie
- ‘ g » Axial multi-conductor transmission line (AMTL) S | """ -
Viop—22 e Vi)
V. —— o] g Vs
/il (b)

3D split view of

o (a) Detailed ladder network model and
the winding

(b) multi-conductor transmission line
model (MTL) [1]

[1] M. Mondal and G. B. Kumbhar, “Partial discharge localization in a power transformer: methods, trends, and future research,” IETE Technical Review
(Institution of Electronics and Telecommunication Engineers, India), vol. 34, no. 5. Taylor and Francis Ltd., Sep. 03, 2017.
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PD Localization Using Electrical Methods
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PD Localization Using Electrical Methods

* An eight-disk winding with 128 turns s
) ressboard N,
. . Winding
‘ J» The middle turn of each section — '
) the injection locations o Al 1
1 1 « The end of the last turn — grounded
- N W W NN DD = =
Injecting the PD Pulse . : Ro| ||| =] | &|||B| "**||oo||~
\ to the Winding / via a small resistance Core
‘ * The other end — open circuit Loior 2
SRR = R 1
(. t
Measuring Point Location 8
B Tank Wall

Schematic of 2D cross section of the winding
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PD Localization Using Electrical Methods
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Capturing the Output
Signal at the Winding
Terminal
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Injecting the Gaussian pulse to
the locations — different rise
times

The current of the last turn —
stored in each time iteration as

an output
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PD Localization Using Electrical Methods

75

50 - .
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3
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Capturing the Output = 100
Signal at the Winding 2 5
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Time [us]
Two sample current waveforms recorded at the

ground terminal when the PD pulse is injected at
location 1 and location 8
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PD Localization Using Electrical Methods

< Wavelet Transform

PD Data Acquisition and . T d i1 PD si |
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PD Localization Using Electrical Methods

< Wavelet Transform

PD Data Acquisition and . Level of D ition = 9
Preprocessing ) l evel of Decomposition =
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PD Localization Using Electrical Methods

| |

¥ Hand-crafted Feature Extraction @
Feature Eé:;‘::"” for PD - manually based on user experience and expertise
3  Time-consuming

* No guarantee that the best features are selected

L 4

Automated Feature Extraction
« Developing a learning model to learn the features

« Sparse Autoencoder (SAE) in this work
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PD Localization Using Electrical Methods

} Feature Extraction using SAE

» The number of input and output nodes are equal, and the model should

3

Feature Extraction for PD
Signal * The number of nodes in the hidden layer represents the number of features

L 4
L 4

learn to optimize their similarity

Input Layer _ Output Layer
Hidden Layer

Encoder

Decoder

Linear
combination
+
sigmoid transfer
function

Linear
combination
+
sigmoid transfer

Sparse Autoencoder architecture with n function

input/output nodes and 30 hidden nodes.
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PD Localization Using Electrical Methods
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P Data Analysis

L 4

P [Localization

Sparse Autoencoder architecture with n
input/output nodes and 30 hidden nodes.

Input Layer
Hidden Layer

Encoder Decoder
Linear Linear
combination combination
+ +
sigmoid transfer sigmoid transfer
function function
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PD Localization Using Electrical Methods

Logistic regression, one-vs-all classifier

PD Data Acquisition and « 70% of the data — training set and 30% — test set

L)y N t
VC)T C)( oy (
I | | | \

‘ * Regularization = 0.001
Feature Extra l' foi ""J « Training Accuracy: 99.1%  Test Accuracy: 97.9%
) [C] 1
PD Data Analysis 114 1
2 10° |
L 4 23 . g |
P Localization 84 n % &\
ok 5 2 107 e
~6 1 g §
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8 3 10—2 | ! | | ! ! ! !
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Predicted Class

a) The confusion matrix for the proposed model test set, b) mean squared error
with L2 and sparsity regularizers (msesparse) vs the number of iterations.

Number of iterations
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PD Localization Using Electrical Methods

f PD Data Acquisition an )

‘ — ‘ — ’« Repeating the algorithm using a different number of hyperparameters

Cfoature xtraction for o |« No improvement in test accuracy in any of these modified models
ignal

L 4

PD Data Analysis | Table 1: The accuracy of the classifier with different value of hyperparameters.
‘ g Tl'ainin% Accuracy (%) Test Accuracy (%)
PD Localization ‘ Level of decomposition = 8 99.1 93.8
’ Regularization = 0 100 93.8
Regularization = 0.0001 95.5 93.8
Number of Features = 29 97.3 91.7
Number of Features = 31 98.2 93.8
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PD Localization Using Electrical Methods

\\
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L 4

L 4

PD Localization

s, 7
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» Extracting the features manually and using as input features

 Significant reduction in the performance in all the cases

« Worse performances un the other possible combinations of

features in terms of test accuracy.

Table 2: The accuracy of the classifier with different value of hyperparameters with hand-crafted

feature extraction.

Training Accuracy (%) Test Accuracy (%)
Statistical features only 86.8 78.3
Energy and statistical features 88.7 73.9
Entropy and statistical features 97.2 69.6
All features together 97.2 71.7
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Conclusion

« A transmission-line-based model was used to simulate an eight-disk transformer winding.

« The SAE model was employed with different hidden nodes to determine the optimal number of features.
« A logistic regression, one-vs-all classifier, was then employed to localize PD in the winding.

» The classification results showed an accuracy of 99.1% for the training set and 97.9% for the test set.

« The presented method was repeated using different hyperparameters, but no improvement was seen.

« The classification was conducted without the SAE using features recommended in previous literature.

« The comparison showed a significant reduction in the performance of the classifier, which indicates the
performance enhancement of the automated feature extraction over handcrafted feature extraction.
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