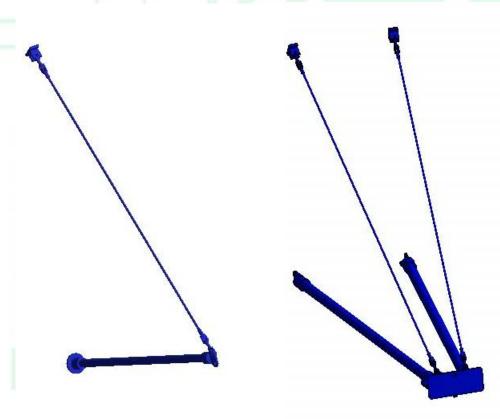
Mechanical Design and Testing of a High Strength Composite Insulated Cross Arm

Usama Ahmed

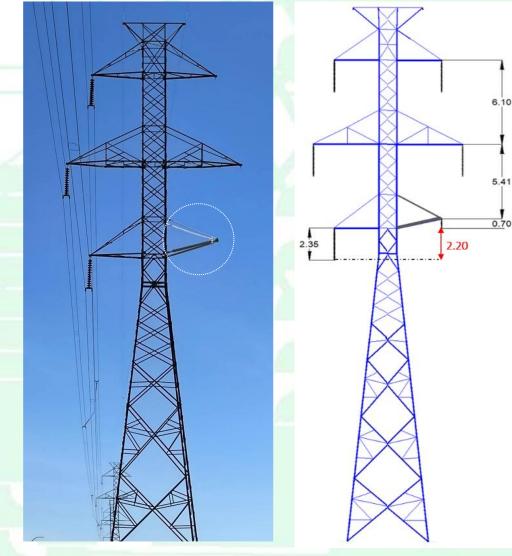

Transmission Solutions Manager SHEMAR Power, Canada

Three Dimensional High Strength Insulated Cross-arms

- Traditional BLP (pivoting and non-pivoting) are recognized solutions for line compaction
- Non-pivoting BLP have limited longitudinal load withstand capabilities which can hinder application
- Wind stability considerations are critical for pivoting type BLP
- Three dimensional high strength insulated crossarm can overcome these limitations and resist high (longitudinal) loads

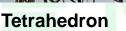
Stress and deformation in BLP and Double Vee Composite Insulated Cross-arm under the same load set

In-service High Strength Composite Insulated Cross-arms



Application Details

- Retrofitting of existing 230 kV tower with insulated cross-arm for ground clearance mitigation
- Increase in ground clearance by 2.2 m without elevating the tower
- Cost effective, less disruptive and easier to implement compared to other alternatives
- Minimal modification of the existing tower and hardware
- Other uses: use with monopoles that require more capacity than typical BLP, overcoming RoW constrictions and thermal uprating



Mechanical Design Requirements - Cross Arm Configuration

- Three common configurations of spatial insulated cross-arms
- Selection of optimal configuration considers withstand loads, cost, weight and design of tower structure
- Double Vee configuration chosen to keep tower and hardware modifications at a minimum and retain the same reaction force pattern

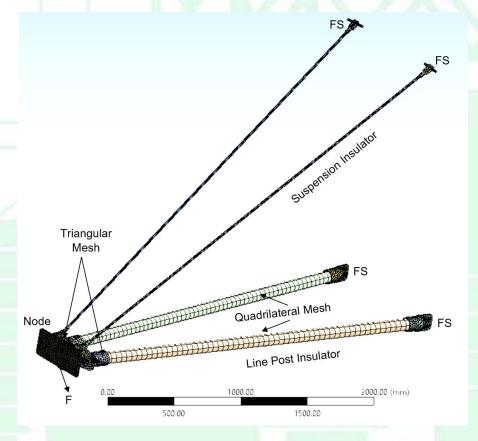
Tripod

Design Requirements - Connection & Suspension Hardware

- Vertically aligned blade end fitting of the line post connected to plate attached to the tower body
- Conductor bundle suspended through a freely swinging hardware assembly of 700 mm to provide longitudinal load alleviation:

LONGITUDINAL LOAD						
Suspension Hardware Length (mm)	Unsymmetrical Ice Condition (N)					
1800	2617					
900 700	5642 7400					
450	12260					

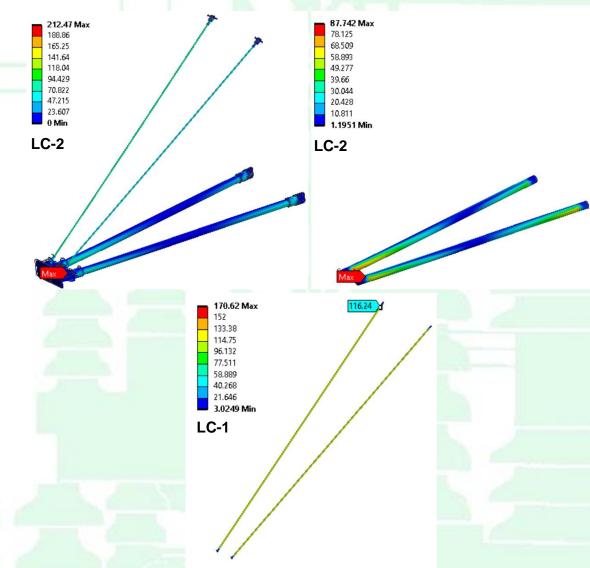
Connection of insulated cross-arm with tower



FEA Simulations - Model Setup

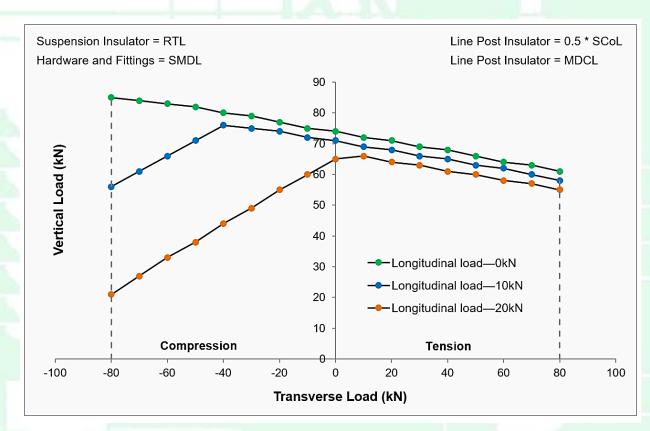
- Some 3D model simplifications are made to make analysis more efficient
- Use of bonded interface between FRP and end fittings, representative degrees of rotational freedom of hardware fittings and bolts modelled as beam elements
- Boundary conditions: Force (F) and Fixed Support (FS)

DESIGN LOAD CASES (divided into Repeatable and Security cases)


Load Case	Condition	Vertical (kN)	Transverse (kN)	Longitudinal (kN)	Overload Factor	Strength Factor
LC-1	Ice	22.3	0	0	1.66	0.5
LC-2	Ice & Unbalanced Tension	22.3	0	17.8	1.0	1.0
LC-3	Wind	9.2	10.8	0	1.66	0.5
LC-4	Wind & Un-balanced Tension	9.2	10.8	17.8	1.0	1.0
LC-5	Ice & Wind	29.0	16.1	0	1.3, 1.25	0.5

FEA Simulations – Results and Sizing

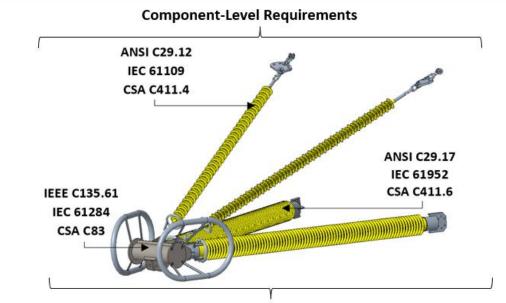
- LC-2 resulted in the highest stress and compression load (85 kN) on the post insulator
- LC-1produced the highest tension load (33 kN) on the brace insulator
- Bending stresses on the post insulator are low and it's sizing is controlled by the required SCoL (170 kN)
- Brace insulators are articulated at either ends with suitable fittings to provide two rotational degrees of freedom, their sizing involves the selection of the suitable SML



FEA Simulations - Combined Load Curves

- The cross-arm is mechanically rated as 'system'
- Derivation of working load curves of 3dimensional cross-arms is more complicated than BLP
- Formulation of curves considers capabilities and strength of the following:
- Stresses in the insulator FRP cores (SCL & SML)
- Buckling stability of line post insulator (SCoL)
- Strength of bolted connections (Shear etc.)
- Rating of hardware fittings (SMDL)

Combined 'working' load interaction diagram of double Vee composite insulated cross-arm


Development of Test Plan

- Currently, no international standards or guides cover mechanical testing of insulated crossarms (incl. BLP)
- Objectives of mechanical testing:
- Confirm buckling capacity of post insulator
- Subject the crossarm assembly to the most critical LC
- Confirm the integrity of insulator end fittings under cyclic loading conditions
- The following tests were selected:
- Static Load Test 1: Post insulator ultimate capacity test
- Static Load Test 2: Assembly combined load test
- Cyclic Load Test 1: Post insulator 2 Hz high cycle test
- Cyclic Load Test 2: Assembly 0.03 Hz low cycle test

IEEE SA SSOCIATION IEEE P2833 CICA overhead transmission lines Working Group (PE/T&D/CICA OHL WG)

Assembly-Level Requirements

(Electrical)

Low frequency voltage withstand Impulse voltage withstand Corona & RIV Power Arc

Assembly-Level Requirements

(Mechanical)


Post insulator buckling Combined static load test Dynamic/cyclic load test Proof-of-fit test

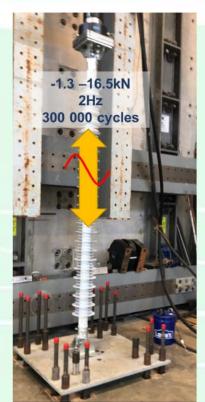
Static Load Tests - Post Ultimate Compression Capacity

- Simulated end conditions: fixed-pinned
- Three samples tested to confirm the SCoL of 170 kN
- Predicted UICoL equal to 250 kN based on Euler equation and FRP core diameter of 90 mm
- Test results:
- Iteration 1: 59.4 kip (266 kN) = 157% of target
- Iteration 2: 56.9 kip (255 kN) = 150% of target
- Iteration 3: 66.6 kip (299kN) = 176% of target

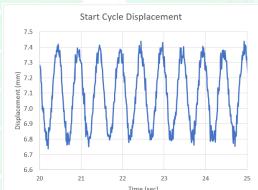
Post insulator ultimate compression capacity test

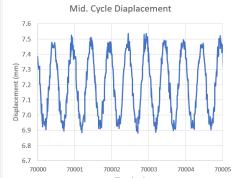
Static Load Tests - Assembly Combined Load Test

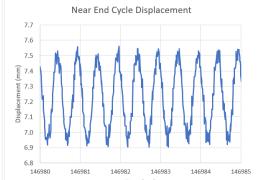
- FEA simulations showed LC-2 as the most demanding condition
- Vertical applied with free hanging weight and longitudinal load with a hydraulic winch
- Test results:
- Failure at 49.9 kN longitudinal load (175%)
- Shear failure of bolts connecting the post insulator to the node


Cross-arm assembly combined static load application

Strength Coordination	Vertical Load (kN)	Transverse Load (kN)	Longitudinal Load (kN)	% of Ultimate Target
Damage limit	Not specified			
Ultimate limit hold point	-22.3	0.0	17.8	100%
Ultimate limit	-22.3	0.0	26.7	150%






Cyclic Load Tests - Setup and Post Test Evaluation

Slippage measurements before and after Cyclic Test

Canada

End deflection measurements during High Cycle Test

Conclusions

- Insulated cross-arms are a proven solution for modern line compaction and upgrading
- Three-dimensional high strength insulated cross-arm overcome the mechanical load limitations of traditional BLP
- Mechanical design of insulated cross-arm takes into account the damage and ultimate limit considerations of the composite material and relies on FEA simulations
- Testing of multi-component insulation arrangements is an essential part of insulator development where identified weak points and analysis of failure modes lead to improved designs
- Full-scale static and cyclic load tests are vital to provide the necessary validation of mechanical performance of the insulated cross-arm

